Singular HJB equations with applications to KPZ on the real line
نویسندگان
چکیده
This paper is devoted to studying Hamilton-Jacobi-Bellman equations with distribution-valued coefficients, which are not well-defined in the classical sense and understood by using paracontrolled distribution method introduced (Gubinelli et al. Forum Math Pi 3(6):1, 2015). By a new characterization of weighted Hölder spaces Zvonkin’s transformation we prove some priori estimates, therefore establish global well-posedness for singular HJB equations. As applications, obtain polynomial KPZ type on real line, as well modified Cole–Hopf applicable.
منابع مشابه
Numerical Solution of Discretised HJB Equations with Applications in Finance
We consider the numerical solution of discretised Hamilton-Jacobi-Bellman (HJB) equations with applications in finance. For the discrete linear complementarity problem arising in American option pricing, we study a policy iteration method. We show, analytically and numerically, that, in standard situations, the computational cost of this approach is comparable to that of European option pricing...
متن کاملNonlinear HJB Equations
This paper is concerned with the standard finite element approximation of HamiltonJacobi-Bellman Equations (HJB) with nonlinear source terms. Under a realistic condition on the nonlinearity, we characterize the discrete solution as a fixed point of a contraction. As a result of this, we also derive a sharp L∞error estimate of the approximation. Mathematics Subject Classification: Primary 35F21;...
متن کاملInduction and Recursion on the Partial Real Line with Applications to Real PCF
The partial real line is an extension of the Euclidean real line with partial real numbers, which has been used to model exact real number computation in the programming language Real PCF. We introduce induction principles and recursion schemes for the partial unit interval, which allow us to verify that Real PCF programs meet their specification. They resemble the so-called Peano axioms for na...
متن کاملFractal Hamilton-Jacobi-KPZ equations
Nonlinear and nonlinear evolution equations of the form ut = Lu ± |∇u| q, where L is a pseudodifferential operator representing the infinitesimal generator of a Lévy stochastic process, have been derived as models for growing interfaces in the case when the continuous Brownian diffusion surface transport is augmented by a random hopping mechanism. The goal of this paper is to study properties o...
متن کاملOn the singular fuzzy linear system of equations
The linear system of equations Ax = b where A = [aij ] in Cn.n is a crispsingular matrix and the right-hand side is a fuzzy vector is called a singularfuzzy linear system of equations. In this paper, solving singular fuzzy linearsystems of equations using generalized inverses such as Drazin inverse andpseudo-inverse are investigated.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Probability Theory and Related Fields
سال: 2022
ISSN: ['0178-8051', '1432-2064']
DOI: https://doi.org/10.1007/s00440-022-01137-w